In Progress
Lesson 10 of 24
In Progress

# The Limit of a Function

The concept of a limit or limiting process, essential to the understanding of calculus, has been around for thousands of years. In fact, early mathematicians used a limiting process to obtain better and better approximations of areas of circles. Yet, the formal definition of a limit—as we know and understand it today—did not appear until the late 19th century. We therefore begin our quest to understand limits, as our mathematical ancestors did, by using an intuitive approach. At the end of this chapter, armed with a conceptual understanding of limits, we examine the formal definition of a limit.

We begin our exploration of limits by taking a look at the graphs of the functions, and ,

which are shown in (Figure). In particular, let’s focus our attention on the behavior of each graph at and around .

Each of the three functions is undefined at , but if we make this statement and no other, we give a very incomplete picture of how each function behaves in the vicinity of . To express the behavior of each graph in the vicinity of 2 more completely, we need to introduce the concept of a limit.

# Intuitive Definition of a Limit

Let’s first take a closer look at how the function  behaves around  in (Figure). As the values of  approach 2 from either side of 2, the values of  approach 4. Mathematically, we say that the limit of  as  approaches 2 is 4. Symbolically, we express this limit as.

From this very brief informal look at one limit, let’s start to develop an intuitive definition of the limit. We can think of the limit of a function at a number  as being the one real number  that the functional values approach as the -values approach , provided such a real number  exists. Stated more carefully, we have the following definition:

We can estimate limits by constructing tables of functional values and by looking at their graphs. This process is described in the following Problem-Solving Strategy.

We apply this Problem-Solving Strategy to compute a limit below:

Based on (Figure above), we make the following observation: It is possible for the limit of a function to exist at a point, and for the function to be defined at this point, but the limit of the function and the value of the function at the point may be different.

Looking at a table of functional values or looking at the graph of a function provides us with useful insight into the value of the limit of a function at a given point. However, these techniques rely too much on guesswork. We eventually need to develop alternative methods of evaluating limits. These new methods are more algebraic in nature and we explore them in the next section; however, at this point we introduce two special limits that are foundational to the techniques to come.

We can make the following observations about these two limits.

1. For the first limit, observe that as  approaches , so does , because . Consequently, .
2. For the second limit, consider (Figure below).

Observe that for all values of  (regardless of whether they are approaching ), the values  remain constant at . We have no choice but to conclude .

# The Existence of a Limit

As we consider the limit in the next example, keep in mind that for the limit of a function to exist at a point, the functional values must approach a single real-number value at that point. If the functional values do not approach a single value, then the limit does not exist.

### Evaluating a Limit That Fails to Exist

Evaluate  using a table of values.

#### Solution

(Figure) lists values for the function  for the given values of .

After examining the table of functional values, we can see that the -values do not seem to approach any one single value. It appears the limit does not exist. Before drawing this conclusion, let’s take a more systematic approach. Take the following sequence of -values approaching 0:

The corresponding -values are

At this point we can indeed conclude that  does not exist. (Mathematicians frequently abbreviate “does not exist” as DNE. Thus, we would write  DNE.) The graph of  is shown in (Figure) and it gives a clearer picture of the behavior of  as  approaches 0. You can see that  oscillates ever more wildly between −1 and 1 as  approaches 0.

# One-Sided Limits

Sometimes indicating that the limit of a function fails to exist at a point does not provide us with enough information about the behavior of the function at that particular point. To see this, we now revisit the function  introduced at the beginning of the section (see (Figure)(b)). As we pick values of  close to 2,  does not approach a single value, so the limit as  approaches 2 does not exist—that is,  DNE. However, this statement alone does not give us a complete picture of the behavior of the function around the -value 2. To provide a more accurate description, we introduce the idea of a one-sided limit. For all values to the left of 2 (or the negative side of 2), . Thus, as  approaches 2 from the left,  approaches −1. Mathematically, we say that the limit as  approaches 2 from the left is −1. Symbolically, we express this idea as.

Similarly, as  approaches 2 from the right (or from the positive side),  approaches 1. Symbolically, we express this idea as.

We can now present an informal definition of one-sided limits.

### Evaluating One-Sided Limits

For the function , evaluate each of the following limits.

#### Solution

We can use tables of functional values again (Figure). Observe that for values of  less than 2, we use  and for values of  greater than 2, we use .

Based on this table, we can conclude that a.  and b. . Therefore, the (two-sided) limit of  does not exist at (Figure) shows a graph of  and reinforces our conclusion about these limits.

Let us now consider the relationship between the limit of a function at a point and the limits from the right and left at that point. It seems clear that if the limit from the right and the limit from the left have a common value, then that common value is the limit of the function at that point. Similarly, if the limit from the left and the limit from the right take on different values, the limit of the function does not exist. These conclusions are summarized in (Figure below).

# Infinite Limits

Evaluating the limit of a function at a point or evaluating the limit of a function from the right and left at a point helps us to characterize the behavior of a function around a given value. As we shall see, we can also describe the behavior of functions that do not have finite limits.

We now turn our attention to , the third and final function introduced at the beginning of this section (see (Figure)(c)). From its graph we see that as the values of  approach 2, the values of  become larger and larger and, in fact, become infinite. Mathematically, we say that the limit of  as  approaches 2 is positive infinity. Symbolically, we express this idea as.

More generally, we define infinite limits as follows:

### Definition

We define three types of infinite limits.

Infinite limits from the left: Let  be a function defined at all values in an open interval of the form .

1. If the values of  increase without bound as the values of  (where ) approach the number , then we say that the limit as  approaches  from the left is positive infinity and we write.
2. If the values of  decrease without bound as the values of  (where ) approach the number , then we say that the limit as  approaches  from the left is negative infinity and we write.

Infinite limits from the right: Let  be a function defined at all values in an open interval of the form .

1. If the values of  increase without bound as the values of  (where , then we say that the limit as  approaches  from the left is positive infinity and we write.
2. If the values of  decrease without bound as the values of  (where , then we say that the limit as  approaches  from the left is negative infinity and we write.

Two-sided infinite limit: Let  be defined for all  in an open interval containing .

1. If the values of  increase without bound as the values of  (where ) approach the number , then we say that the limit as  approaches  is positive infinity and we write.
2. If the values of  decrease without bound as the values of  (where ) approach the number , then we say that the limit as  approaches  is negative infinity and we write.

It is important to understand that when we write statements such as  or  we are describing the behavior of the function, as we have just defined it. We are not asserting that a limit exists. For the limit of a function  to exist at , it must approach a real number  as  approaches . That said, if, for example, , we always write  rather than  DNE.

### Recognizing an Infinite Limit

Evaluate each of the following limits, if possible. Use a table of functional values and graph  to confirm your conclusion.

#### Solution

Begin by constructing a table of functional values.

1. The values of  decrease without bound as  approaches 0 from the left. We conclude that.
2. The values of  increase without bound as  approaches 0 from the right. We conclude that.
3. Since  and  have different values, we conclude that DNE.

The graph of  in (Figure below) confirms these conclusions.

It is useful to point out that functions of the form , where  is a positive integer, have infinite limits as  approaches  from either the left or right ((Figure)). These limits are summarized in (Figure).

We should also point out that in the graphs of

, points on the graph having

-coordinates very near to

are very close to the vertical line

. That is, as

approaches

, the points on the graph of

are closer to the line

. The line

is called a vertical asymptote of the graph. We formally define a vertical asymptote as follows:

In the next example we put our knowledge of various types of limits to use to analyze the behavior of a function at several different points.

### Chapter Opener: Einstein’s Equation

In the chapter opener we mentioned briefly how Albert Einstein showed that a limit exists to how fast any object can travel. Given Einstein’s equation for the mass of a moving object, what is the value of this bound?

#### Solution

Our starting point is Einstein’s equation for the mass of a moving object,,

where  is the object’s mass at rest,  is its speed, and  is the speed of light. To see how the mass changes at high speeds, we can graph the ratio of masses  as a function of the ratio of speeds,  ((Figure)).

We can see that as the ratio of speeds approaches 1—that is, as the speed of the object approaches the speed of light—the ratio of masses increases without bound. In other words, the function has a vertical asymptote at . We can try a few values of this ratio to test this idea.

Thus, according to (Figure above), if an object with mass 100 kg is traveling at 0.9999, its mass becomes 7071 kg. Since no object can have an infinite mass, we conclude that no object can travel at or more than the speed of light.

### Key Concepts

• A table of values or graph may be used to estimate a limit.
• If the limit of a function at a point does not exist, it is still possible that the limits from the left and right at that point may exist.
• If the limits of a function from the left and right exist and are equal, then the limit of the function is that common value.
• We may use limits to describe infinite behavior of a function at a point.

# Key Equations

• Intuitive Definition of the Limit
• Two Important Limits

• One-Sided Limits

• Infinite Limits from the Left

• Infinite Limits from the Right

• Two-Sided Infinite Limits
and
and